290 research outputs found

    The Separation and H-alpha Contrasts of Massive Accreting Planets in the Gaps of Transitional Disks: Predicted H-alpha Protoplanet Yields for Adaptive Optics Surveys

    Full text link
    We present a massive accreting gap (MAG) planet model that ensures large gaps in transitional disks are kept dust free by the scattering action of three co-planar quasi-circular planets in a 1:2:4 Mean Motion Resonance (MMR). This model uses the constraint of the observed gap size, and the dust-free nature of the gap, to determine within ~10% the possible orbits for 3 massive planets in an MMR. Calculated orbits are consistent with the observed orbits and H-alpha emission (the brightest line to observe these planets) for LkCa 15 b and PDS 70 b and PDS 70 c within observational errors. Moreover, the model suggests that the scarcity of detected H-alpha planets is likely a selection effect of the current limitations of non-coronagraphic, low (<10%) Strehl, H-alpha imaging with Adaptive Optics (AO) systems used in past H-alpha surveys. We predict that as higher Strehl AO systems (with high-performance custom coronagraphs; like 6.5-m Magellan Telescope MagAO-X system) are utilized at H-alpha the number of detected gap planets will substantially increase by more than tenfold. For example, we show that >25 new H-alpha "gap planets" are potentially discoverable by a survey of the best 19 transitional disks with MagAO-X. Detections of these accreting protoplanets will significantly improve our understanding of planet formation, planet growth and accretion, solar system architectures, and planet disk interactions.Comment: 36 pages, 8 Figures, Accepted by the Astronomical Journa

    The Magellan Adaptive Secondary VisAO Camera: Diffraction- Limited Broadband Visible Imaging and 20mas Fiber Array IFS

    Full text link
    The Magellan Adaptive Secondary AO system, scheduled for first light in the fall of 2011, will be able to simultaneously perform diffraction limited AO science in both the mid-IR, using the BLINC/MIRAC4 10\{mu}m camera, and in the visible using our novel VisAO camera. The VisAO camera will be able to operate as either an imager, using a CCD47 with 8.5 mas pixels, or as an IFS, using a custom fiber array at the focal plane with 20 mas elements in its highest resolution mode. In imaging mode, the VisAO camera will have a full suite of filters, coronagraphic focal plane occulting spots, and SDI prism/filters. The imaging mode should provide ~20% mean Strehl diffraction-limited images over the band 0.5-1.0 \{mu}m. In IFS mode, the VisAO instrument will provide R~1,800 spectra over the band 0.6-1.05 \{mu}m. Our unprecedented 20 mas spatially resolved visible spectra would be the highest spatial resolution achieved to date, either from the ground or in space. We also present lab results from our recently fabricated advanced triplet Atmospheric Dispersion Corrector (ADC) and the design of our novel wide-field acquisition and active optics lens. The advanced ADC is designed to perform 58% better than conventional doublet ADCs and is one of the enabling technologies that will allow us to achieve broadband (0.5-1.0\{mu}m) diffraction limited imaging and wavefront sensing in the visible.Comment: Proceedings of the SPIE, 2010, Vol. 7736, 77362

    Resolving the H-alpha-emitting Region in the Wind of Eta Carinae

    Full text link
    The massive evolved star Eta Carinae is the most luminous star in the Milky Way and has the highest steady wind mass-loss rate of any known star. Radiative transfer models of the spectrum by Hillier et al. predict that H-alpha is mostly emitted in regions of the wind at radii of 6 to 60 AU from the star (2.5 to 25 mas at 2.35 kpc). We present diffraction-limited images (FWHM ~25 mas) with Magellan adaptive optics in two epochs, showing that Eta Carinae consistently appears ~2.5 to 3 mas wider in H-alpha emission compared to the adjacent 643 nm continuum. This implies that the H-alpha line-forming region may have a characteristic emitting radius of 12 mas or ~30 AU, in very good agreement with the Hillier stellar-wind model. This provides direct confirmation that the physical wind parameters of that model are roughly correct, including the mass-loss rate of 10^-3 M_sun/yr, plus the clumping factor, and the terminal velocity. Comparison of the H-alpha images (ellipticity and PA) to the continuum images reveals no significant asymmetries at H-alpha. Hence, any asymmetry induced by a companion or by the primary's rotation do not strongly influence the global H-alpha emission in the outer wind.Comment: Published in ApJ

    High-contrast imaging in the Hyades with snapshot LOCI

    Full text link
    To image faint substellar companions obscured by the stellar halo and speckles, scattered light from the bright primary star must be removed in hardware or software. We apply the "locally-optimized combination of images" (LOCI) algorithm to 1-minute Keck Observatory snapshots of GKM dwarfs in the Hyades using source diversity to determine the most likely PSF. We obtain a mean contrast of 10^{-2} at 0.01", 10^{-4} at <1", and 10^{-5} at 5". New brown dwarf and low-mass stellar companions to Hyades primaries are found in a third of the 84 targeted systems. This campaign shows the efficacy of LOCI on snapshot imaging as well as on bright wide binaries with off-axis LOCI, reaching contrasts sufficient for imaging 625-Myr late-L/early-T dwarfs purely in post-processing.Comment: 12 pages, 12 figures, to appear in SPIE Astronomy 2012, paper 8447-16
    • …
    corecore